Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mutation of a phosphorylatable residue in Put3p affects the magnitude of rapamycin-induced PUT1 activation in a Gat1p-dependent manner.

Identifieur interne : 001504 ( Main/Exploration ); précédent : 001503; suivant : 001505

Mutation of a phosphorylatable residue in Put3p affects the magnitude of rapamycin-induced PUT1 activation in a Gat1p-dependent manner.

Auteurs : Michael K. Leverentz [Royaume-Uni] ; Robert N. Campbell ; Yvonne Connolly ; Anthony D. Whetton ; Richard J. Reece

Source :

RBID : pubmed:19574222

Descripteurs français

English descriptors

Abstract

Saccharomyces cerevisiae can utilize high quality (e.g. glutamine and ammonia) as well as low quality (e.g. gamma-amino butyric acid and proline) nitrogen sources. The transcriptional activator Put3p allows yeast cells to utilize proline as a nitrogen source through expression of the PUT1 and PUT2 genes. Put3p activates high level transcription of these genes by binding proline directly. However, Put3p also responds to other lower quality nitrogen sources. As nitrogen quality decreases, Put3p exhibits an increase in phosphorylation concurrent with an increase in PUT gene expression. The proline-independent activation of the PUT genes requires both Put3p and the positively acting GATA factors, Gln3p and Gat1p. Conversely, the phosphorylation of Put3p is not dependent on GATA factor activity. Here, we find that the mutation of Put3p at amino acid Tyr-788 modulates the proline-independent activation of PUT1 through Gat1p. The phosphorylation of Put3p appears to influence the association of Gat1p, but not Gln3p, to the PUT1 promoter. Combined, our findings suggest that this may represent a mechanism through which yeast cells rapidly adapt to use proline as a nitrogen source under nitrogen limiting conditions.

DOI: 10.1074/jbc.M109.030361
PubMed: 19574222
PubMed Central: PMC2782005


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mutation of a phosphorylatable residue in Put3p affects the magnitude of rapamycin-induced PUT1 activation in a Gat1p-dependent manner.</title>
<author>
<name sortKey="Leverentz, Michael K" sort="Leverentz, Michael K" uniqKey="Leverentz M" first="Michael K" last="Leverentz">Michael K. Leverentz</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT</wicri:regionArea>
<orgName type="university">Université de Manchester</orgName>
<placeName>
<settlement type="city">Manchester</settlement>
<region type="nation">Angleterre</region>
<region nuts="2" type="region">Grand Manchester</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Campbell, Robert N" sort="Campbell, Robert N" uniqKey="Campbell R" first="Robert N" last="Campbell">Robert N. Campbell</name>
</author>
<author>
<name sortKey="Connolly, Yvonne" sort="Connolly, Yvonne" uniqKey="Connolly Y" first="Yvonne" last="Connolly">Yvonne Connolly</name>
</author>
<author>
<name sortKey="Whetton, Anthony D" sort="Whetton, Anthony D" uniqKey="Whetton A" first="Anthony D" last="Whetton">Anthony D. Whetton</name>
</author>
<author>
<name sortKey="Reece, Richard J" sort="Reece, Richard J" uniqKey="Reece R" first="Richard J" last="Reece">Richard J. Reece</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19574222</idno>
<idno type="pmid">19574222</idno>
<idno type="doi">10.1074/jbc.M109.030361</idno>
<idno type="pmc">PMC2782005</idno>
<idno type="wicri:Area/Main/Corpus">001496</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001496</idno>
<idno type="wicri:Area/Main/Curation">001496</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001496</idno>
<idno type="wicri:Area/Main/Exploration">001496</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mutation of a phosphorylatable residue in Put3p affects the magnitude of rapamycin-induced PUT1 activation in a Gat1p-dependent manner.</title>
<author>
<name sortKey="Leverentz, Michael K" sort="Leverentz, Michael K" uniqKey="Leverentz M" first="Michael K" last="Leverentz">Michael K. Leverentz</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT</wicri:regionArea>
<orgName type="university">Université de Manchester</orgName>
<placeName>
<settlement type="city">Manchester</settlement>
<region type="nation">Angleterre</region>
<region nuts="2" type="region">Grand Manchester</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Campbell, Robert N" sort="Campbell, Robert N" uniqKey="Campbell R" first="Robert N" last="Campbell">Robert N. Campbell</name>
</author>
<author>
<name sortKey="Connolly, Yvonne" sort="Connolly, Yvonne" uniqKey="Connolly Y" first="Yvonne" last="Connolly">Yvonne Connolly</name>
</author>
<author>
<name sortKey="Whetton, Anthony D" sort="Whetton, Anthony D" uniqKey="Whetton A" first="Anthony D" last="Whetton">Anthony D. Whetton</name>
</author>
<author>
<name sortKey="Reece, Richard J" sort="Reece, Richard J" uniqKey="Reece R" first="Richard J" last="Reece">Richard J. Reece</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antifungal Agents (pharmacology)</term>
<term>GATA Transcription Factors (genetics)</term>
<term>GATA Transcription Factors (metabolism)</term>
<term>Gene Expression Regulation, Fungal (drug effects)</term>
<term>Gene Expression Regulation, Fungal (genetics)</term>
<term>Mutation (MeSH)</term>
<term>Phosphorylation (drug effects)</term>
<term>Phosphorylation (genetics)</term>
<term>Proline (genetics)</term>
<term>Proline (metabolism)</term>
<term>Proline Oxidase (biosynthesis)</term>
<term>Proline Oxidase (genetics)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Sirolimus (pharmacology)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
<term>Transcription, Genetic (drug effects)</term>
<term>Transcription, Genetic (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Antifongiques (pharmacologie)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Facteurs de transcription GATA (génétique)</term>
<term>Facteurs de transcription GATA (métabolisme)</term>
<term>Mutation (MeSH)</term>
<term>Phosphorylation (effets des médicaments et des substances chimiques)</term>
<term>Phosphorylation (génétique)</term>
<term>Proline (génétique)</term>
<term>Proline (métabolisme)</term>
<term>Proline dehydrogenase (biosynthèse)</term>
<term>Proline dehydrogenase (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (effets des médicaments et des substances chimiques)</term>
<term>Régulation de l'expression des gènes fongiques (génétique)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Transcription génétique (effets des médicaments et des substances chimiques)</term>
<term>Transcription génétique (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Proline Oxidase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>GATA Transcription Factors</term>
<term>Proline</term>
<term>Proline Oxidase</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>GATA Transcription Factors</term>
<term>Proline</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antifungal Agents</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Proline dehydrogenase</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
<term>Phosphorylation</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Phosphorylation</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Transcription génétique</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
<term>Phosphorylation</term>
<term>Saccharomyces cerevisiae</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Facteurs de transcription GATA</term>
<term>Phosphorylation</term>
<term>Proline</term>
<term>Proline dehydrogenase</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Saccharomyces cerevisiae</term>
<term>Transcription génétique</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Facteurs de transcription GATA</term>
<term>Proline</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antifongiques</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Mutation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Mutation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Saccharomyces cerevisiae can utilize high quality (e.g. glutamine and ammonia) as well as low quality (e.g. gamma-amino butyric acid and proline) nitrogen sources. The transcriptional activator Put3p allows yeast cells to utilize proline as a nitrogen source through expression of the PUT1 and PUT2 genes. Put3p activates high level transcription of these genes by binding proline directly. However, Put3p also responds to other lower quality nitrogen sources. As nitrogen quality decreases, Put3p exhibits an increase in phosphorylation concurrent with an increase in PUT gene expression. The proline-independent activation of the PUT genes requires both Put3p and the positively acting GATA factors, Gln3p and Gat1p. Conversely, the phosphorylation of Put3p is not dependent on GATA factor activity. Here, we find that the mutation of Put3p at amino acid Tyr-788 modulates the proline-independent activation of PUT1 through Gat1p. The phosphorylation of Put3p appears to influence the association of Gat1p, but not Gln3p, to the PUT1 promoter. Combined, our findings suggest that this may represent a mechanism through which yeast cells rapidly adapt to use proline as a nitrogen source under nitrogen limiting conditions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19574222</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>10</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0021-9258</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>284</Volume>
<Issue>36</Issue>
<PubDate>
<Year>2009</Year>
<Month>Sep</Month>
<Day>04</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Mutation of a phosphorylatable residue in Put3p affects the magnitude of rapamycin-induced PUT1 activation in a Gat1p-dependent manner.</ArticleTitle>
<Pagination>
<MedlinePgn>24115-22</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M109.030361</ELocationID>
<Abstract>
<AbstractText>Saccharomyces cerevisiae can utilize high quality (e.g. glutamine and ammonia) as well as low quality (e.g. gamma-amino butyric acid and proline) nitrogen sources. The transcriptional activator Put3p allows yeast cells to utilize proline as a nitrogen source through expression of the PUT1 and PUT2 genes. Put3p activates high level transcription of these genes by binding proline directly. However, Put3p also responds to other lower quality nitrogen sources. As nitrogen quality decreases, Put3p exhibits an increase in phosphorylation concurrent with an increase in PUT gene expression. The proline-independent activation of the PUT genes requires both Put3p and the positively acting GATA factors, Gln3p and Gat1p. Conversely, the phosphorylation of Put3p is not dependent on GATA factor activity. Here, we find that the mutation of Put3p at amino acid Tyr-788 modulates the proline-independent activation of PUT1 through Gat1p. The phosphorylation of Put3p appears to influence the association of Gat1p, but not Gln3p, to the PUT1 promoter. Combined, our findings suggest that this may represent a mechanism through which yeast cells rapidly adapt to use proline as a nitrogen source under nitrogen limiting conditions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Leverentz</LastName>
<ForeName>Michael K</ForeName>
<Initials>MK</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Campbell</LastName>
<ForeName>Robert N</ForeName>
<Initials>RN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Connolly</LastName>
<ForeName>Yvonne</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Whetton</LastName>
<ForeName>Anthony D</ForeName>
<Initials>AD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Reece</LastName>
<ForeName>Richard J</ForeName>
<Initials>RJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>07</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000935">Antifungal Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C096100">GAT1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050980">GATA Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C071664">GLN3 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C068399">PUT3 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9DLQ4CIU6V</RegistryNumber>
<NameOfSubstance UI="D011392">Proline</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.5.3.-</RegistryNumber>
<NameOfSubstance UI="D011394">Proline Oxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000935" MajorTopicYN="N">Antifungal Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050980" MajorTopicYN="N">GATA Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011392" MajorTopicYN="N">Proline</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011394" MajorTopicYN="N">Proline Oxidase</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>7</Month>
<Day>4</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>7</Month>
<Day>4</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19574222</ArticleId>
<ArticleId IdType="pii">M109.030361</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M109.030361</ArticleId>
<ArticleId IdType="pmc">PMC2782005</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Biol. 2000 Feb;20(3):892-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10629046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2008;42:27-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18303986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Aug 24;276(34):32136-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11408486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2002 Feb;22(4):1246-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11809814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2002 Aug;26(3):223-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12165425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2002 Dec;66(4):579-91, table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12456783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Apr;13(4):662-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12654719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2003 Jun;2(3):552-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12796300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Oct 1;22(19):5147-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14517252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1983 Apr;3(4):672-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6343842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1987;53(1):85-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3596251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Jan;11(1):564-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1986247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 May;11(5):2609-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2017167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10510-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1961715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1993 Sep;13(9):5829-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8355715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1995 Apr;15(4):2321-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7891726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Apr 18;14(8):1655-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7737118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1994 Dec;10(13):1793-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7747518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1995 Mar;11(3):247-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7785325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1996 Apr;142(4):1069-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8846888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Nov 1;271(44):27299-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8910305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1997 Jan;22(1):18-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9020587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 1997 Jun;21(3):388-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9290251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 1997 Sep;4(9):751-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9303004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1998 May;144 ( Pt 5):1451-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9611819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 1999 Apr;26(4):680-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10343905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 1999 May;3(5):673-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10360183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2005 Apr;5(6-7):605-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15780659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2005 Jul;30(7):405-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15950477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2005 Aug;4(8):1134-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15923565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2005 Dec 1;19(23):2816-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16322557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006;34(4):e33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16500888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2006 Oct 16;25(48):6392-415</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2006 Nov;34(Pt 5):794-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17052200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 4;283(14):8919-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18245087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2001 May 15;15(10):1217-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11358866</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
<li>Grand Manchester</li>
</region>
<settlement>
<li>Manchester</li>
</settlement>
<orgName>
<li>Université de Manchester</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Campbell, Robert N" sort="Campbell, Robert N" uniqKey="Campbell R" first="Robert N" last="Campbell">Robert N. Campbell</name>
<name sortKey="Connolly, Yvonne" sort="Connolly, Yvonne" uniqKey="Connolly Y" first="Yvonne" last="Connolly">Yvonne Connolly</name>
<name sortKey="Reece, Richard J" sort="Reece, Richard J" uniqKey="Reece R" first="Richard J" last="Reece">Richard J. Reece</name>
<name sortKey="Whetton, Anthony D" sort="Whetton, Anthony D" uniqKey="Whetton A" first="Anthony D" last="Whetton">Anthony D. Whetton</name>
</noCountry>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Leverentz, Michael K" sort="Leverentz, Michael K" uniqKey="Leverentz M" first="Michael K" last="Leverentz">Michael K. Leverentz</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001504 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001504 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19574222
   |texte=   Mutation of a phosphorylatable residue in Put3p affects the magnitude of rapamycin-induced PUT1 activation in a Gat1p-dependent manner.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19574222" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020